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Abstract
Isospectral domains are non-isometric regions of space for which the spectra
of the Laplace–Beltrami operator coincide. In the two-dimensional Euclidean
space, instances of such domains have been given. It has been proved for these
examples that the length spectrum, that is the set of the lengths of all periodic
trajectories, coincides as well. However there is no one-to-one correspondence
between the diffractive trajectories. It will be shown here how the diffractive
contributions to the Green functions match nevertheless in a ‘one-to-three’
correspondence.

PACS numbers: 05.45.−a, 02.70.Hm

1. Introduction

The quantum mechanical problem of finding isospectral domains, that is two non-isometric
regions for which the sets {En, n ∈ N} of solutions of the stationary Schrödinger equation

(� + E)� = 0 (1)

with �|boundary = 0, are identical, has been formulated in a synthetic way by Mark Kač in
1966 in his famous paper ‘Can one hear the shape of a drum’ [1]. Negative answers to this
problem have been given for domains on Riemannian manifolds [2, 3]. The answer for two-
dimensional Euclidean domains was finally given by Gordon et al [4], who provide explicitly
a pair of simply connected non-isometric Euclidean isospectral domains. The two billiards
considered in [4] are represented in figure 1(a). Using a paper-folding method, Chapman [5]
showed that in this case isospectrality arises from the existence of a map between the two
domains. This method allowed him to produce more examples of isospectral billiards (by
billiard we mean a two-dimensional Euclidean connected compact domain): he showed that
any triangle or even rectangle could replace the base right angled isosceles triangle used to
build the billiards in figure 1(a); one just has to glue together seven copies of the chosen base
shape obtained by symmetry with respect to its edges, in the same order so as to build the
billiards of figure 1(a). We will work here with the pair of billiards B1 and B2 of figure 1(b),
where each billiard is made of seven rectangles. Later on, Buser et al [6] presented more
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(a) (b)

Figure 1. (a) Two isospectral billiards with a triangular base shape. (b) The same with a rectangular
base shape.

examples of planar isospectral domains made of more building blocks; all of them are based
on the same principle of gluing together copies of a base triangle.

A natural question arises when one considers isospectral billiards: is there any relation
between their periodic orbits, and is there any relation between their diffractive orbits? It is
well known that the quantum density of states

d(E) =
∑

n

δ(E − En) (2)

can be expressed by means of the advanced Green function as

d(E) = − 1

π
Im

∫
daG(a, a) (3)

where the integral is performed over the domain. In the case of two isospectral billiards, one
might naturally expect the integrals of the Green functions of the two systems to be equal.
Since the Green function can be expanded as a sum over all Feynman paths, the correspondence
between the spectra should be associated with a correspondence between the periodic orbits
and between the diffractive orbits. Moreover, there exists an exact expression for the Green
function in a two-dimensional polygonal billiard: following Sommerfeld [7, 8], who provides
the exact Green function for a half infinite straight mirror in two dimensions, Štovı́ček [9, 10]
expressed the Green function for a collection of magnetic flux lines on a plane (the multi-flux
Aharonov–Bohm effect) as a sum over all possible scattering paths. This method has been
generalized in [11] to provide the exact Green function for the scalar wave equation in a plane
with any set of perfectly reflecting straight mirrors joined by diffractive corners. The Green
function is given as a scattering series involving all classical trajectories and all scattering
contributions; a semiclassical series expansion shows that one expects the Green functions of
the two system to correspond order by order.

The correspondence between the periodic orbits of two isospectral billiards (which
contribute to the lowest order of the scattering series) has been discussed in [12] for isospectral
domains on Riemannian manifolds. The Laplace spectrum versus the length spectrum is also
discussed by Gordon in [4] for Euclidean isospectral billiards. A proof of the one-to-one
correspondence between the length spectra (referred to as ‘iso-length spectrality’) in the case
of the two celebrated isospectral billiards considered by Gordon is given in [13], based on
simple mathematical tools. More generally, iso-length spectrality has been proved in [18]
for all pairs of isospectral billiards having a ‘transplantation’ property (which corresponds,
roughly speaking, to the existence of a map between the two domains, such as the one that
will be given in section 2.2). However, what [13] underlines is that there is no one-to-one
correspondence between the diffractive trajectories of the two billiards. More precisely, one
can find straight lines between diffractive corners in one of the billiards that do not have any
counterpart in the other. Still, the equality of the spectra, and hence the equality of the trace
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Figure 2. Four copies of the two isospectral billiards B1 and B2 are glued together to make two
isospectral translation surfaces M1 and M2 made from seven tiles.

of the Green function, imposes some correspondence. In section 2 we will study the map that
exists between the two billiards and show how this bijection allows us to prove a one-to-one
correspondence of the periodic orbits. In section 3 we establish a relation between the Green
function of the two studied domains. Finally in section 4 we answer the following question:
what is the correspondence between the diffractive orbits? The conclusion briefly shows how
the method presented here can be naturally extended to other pairs of isospectral billiards.

2. Isospectrality and periodic orbits

2.1. The translation surfaces

Instead of studying directly the billiards B1 and B2 of figure 1(b), we will consider the
equivalent problem of studying the translation surfaces [14] associated with these billiards.
B1 and B2 are polygons with angles (π/2, π/2, π/2, π/2, π/2, π/2, π/2, 3π/2, 3π/2, 2π).
A construction due to Zemlyakov and Katok [15] shows that the translation surface associated
with a generic rational polygonal billiard is obtained by unfolding the polygon with respect
to each of its sides, which means gluing to the initial polygon its images by reflexion with
respect to each of its sides and repeating the operation. If αi = πmi/ni are the angles of the
polygon and N is the least common multiple of the ni , then 2N copies of the initial billiard are
needed. In the case of the billiards B1 and B2, since all the angles are multiples of π/2, only
four copies are needed, and the translation surfaces M1 and M2 obtained by this construction
are represented in figure 2. In these surfaces, all opposite sides are identified. Note that each
structure has four singularities: two angles of measure 6π (dot and circle), and two angles of
measure 4π (cross and star). Moreover, each singularity with the angle 2(k + 1)π brings the
contribution k to the quantity 2g − 2, where g is the genus of the surface [16]. Therefore the
surfaces M1 and M2 both are of genus 4. Any path drawn on Mν corresponds to an unfolded
path on Bν .

Each surface is made of seven tiles, which give to each translation surface the structure of
a seven-fold torus cover. If the tiles are numbered as in figure 2, the way these tiles are glued
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together to form a surface of genus 4 can be expressed, following [13], through three 7 × 7

matrices: for each structure Mν, ν = 1, 2, we introduce the matrices R(ν),
←−
U (ν) and

−→
U (ν)

such that R
(ν)
i,j = 1 if the right edge of tile i is glued to the left edge of tile j and 0 otherwise,

←−
U

(ν)
i,j = 1 if the left half of the upper edge of tile i is glued to the left half of the lower edge

of tile j and 0 otherwise, and of course
−→
U

(ν)
i,j = 1 if the right half of the upper edge of tile i is

glued to the right half of the lower edge of tile j and 0 otherwise. With the help of figure 2,
we can obtain these matrices easily. They are given in the appendix. For instance, in M1, the
right neighbour of tile 5 is tile 1, the right neighbour of tile 3 is tile 7, etc. We can also define

the matrices L(ν),
←−
D (ν) and

−→
D (ν) which indicate which tile is glued to the left, the bottom

left or the bottom right of a given tile. These three matrices are nothing but the transposes of

respectively R(ν),
←−
U (ν) and

−→
U (ν).

2.2. Mapping between translation surfaces

The isospectrality of the two billiards arises from the existence of a mapping between M1

and M2, provided by Gordon [4] and made explicit by Chapman [5]. In this section the
isospectrality between M1 and M2 is proved.

By convention, we will label any point a in M1 or M2 (which are made of seven tiles or
tori) by its position a in the tile and the number i (1 � i � 7) of the tile it is in; we will write
alternatively a or (a, i). Let us define the ‘transplantation matrix’ T as

T =




1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
1 0 0 0 1 1 0
0 1 0 1 0 1 0
0 0 1 1 1 0 0
1 1 1 0 0 0 0




. (4)

The isospectrality arises from the fact that for any given eigenstate φn of M1, we can construct
an eigenstate ψn in M2 defined by

ψn(a, i) = 1

An

∑
j

Ti,jφn(a, j) (5)

where An is a normalization factor that we will discuss in section 3. For instance, for a in tile
1 of M2, we have

ψn(a, 1) = 1

An

(φn(a, 1) + φn(a, 4) + φn(a, 7)). (6)

We call the tiles 1, 4, 7 in M1 the ‘pre-images’ of tile 1 in M2, and we say that 1 is ‘made
of’ tiles 1, 4 and 7. The fact that the functions ψn are the eigenstates of M2 comes from the
following relations:

R(2)T = T R(1)
←−
U (2)T = T

←−
U (1)

−→
U (2)T = T

−→
U (1) (7)

which can be verified directly on the matrices given in the appendix. Each of these commutation
relations has a natural interpretation. For instance the commutation relation for R means that
for any pair (i, j) of tiles, i on M2 and j on M1, we have∑

k

R
(2)
i,k Tk,j =

∑
k′

Ti,k′R
(1)
k′,j (8)
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Figure 3. A path drawn on M1.

which means that if k is the tile on the right of tile i in M2 (i.e. R(2)
i,k = 1) and if we call i1, i2, i3

the pre-images of i (i.e. Ti,i1 = Ti,i2 = Ti,i3 = 1), then by (8)

Tk,j = R
(1)
i1,j

+ R
(1)
i2,j

+ R
(1)
i3,j

. (9)

Among the seven possible values of j , the right-hand side of equation (9) will be 1 if and
only if j is on the right of i1, i2 or i3 in M1, and 0 otherwise. This implies that if k is on
the right of i, the three pre-images k1, k2, k3 of k (verifying Tk,ki

= 1) are the three tiles on
the right of the three pre-images of i. Concretely, since tile 1 in M2 is made of tiles 1, 4, 7,
then its right neighbour tile 5 is made of the right neighbours 2, 4, 6 of tiles 1, 4, 7. Since the

commutation relation (7) is valid for all matrices A ∈ {R,L,
−→
U ,

←−
U ,

−→
D ,

←−
D } all properties of

continuity between tiles in M1 are preserved by transplantation. Therefore all the functions
ψn constructed by (5) are continuous on M2. Obviously these functions verify the Helmholtz
equation (1) as a linear combination of solutions, and with the same eigenvalues. Finally, one
has to note that since T is an invertible matrix, only φn = 0 would give ψn = 0. This proves
the isospectrality between M1 and M2.

2.3. Trajectories on the translation surfaces

The matrix formalism introduced in subsection 2.1 allows us to construct a ‘movement matrix’
M from any path drawn on the translation surface M1 or M2, adapting the method explained
in [13]. Each tile has six neighbours, and any path is drawn on a sequence (i1, i2, . . . , in)

of tiles such that ik+1 is a neighbour of ik , provided it does not hit any vertex (we call
‘vertex’ a point on the surface where four tiles join, or a point in the middle of a horizontal
edge; there are four scattering vertices, the others are non-scattering ones). Let us call

Ak ∈ {R,L,
−→
U ,

←−
U ,

−→
D ,

←−
D } the matrix corresponding to the movement from ik to ik+1, i.e.

the matrix verifying (Ak)ik,ik+1 = 1. If we define the movement matrix M as
∏n

k=1 Ak , it will
verify Mi1,in = 1. As a product of permutation matrices, M is a permutation matrix, and it
maps tile i1 onto tile in. For instance the path drawn in figure 3 corresponds to a sequence

of tiles (1, 6, 4, 4, 6, 5) and to a sequence of matrices M = R
←−
U L

−→
U R. Reciprocally, for

any product M = A1A2 · · ·An of matrices belonging to {R,L,
−→
U ,

←−
U ,

−→
D ,

←−
D }, if Mi,j = 1

then there is a sequence (i1 = i, i2, . . . , in = j) of tiles such that ik+1 is a neighbour of ik
and (Ak)ik,ik+1 = 1. Note that infinitely many sequences (i1, i2, . . . , in) give rise to the same
movement matrix, because there is an infinite number of sequences and only a finite number
(7! = 5040) of permutations.

Let us now consider a sequence of matrices
(
A

(1)
1 , A

(1)
2 , . . . , A(1)

n

)
, and the movement

matrix M(1) ≡ A
(1)
1 A

(1)
2 · · · A(1)

n ; then for any i it defines a unique sequence of tiles
(i = i1, i2, . . . , in) such that

(
A

(1)
k

)
ik ,ik+1

= 1. This sequence has the property that M
(1)
i1,in

= 1.
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Figure 4. Two identical strips of periodic orbits on the surfaces M1 and M2.

According to relation (7), each A
(1)
k verifies A

(1)
k = T −1A

(2)
k T , which implies that the matrix

M(2) ≡ A
(2)
1 A

(2)
2 · · · A(2)

n verifies

T M(1) = M(2)T . (10)

The interpretation of this commutation relation is the same as the interpretation of (7) for the
individual Ak (see equations (8) and (9) with R replaced by M): if one can go from i1 to in by a
sequence of tiles glued in a specific way, then the three pre-images of in are the tiles obtained
by starting from the three pre-images of i1 and following a sequence of tiles glued in exactly
the same way. To any path drawn on M2 not hitting the corners it is possible to associate
the sequence of tiles on which it is drawn, starting from a tile i and finishing on a tile j ; it is
therefore possible to draw an identical path starting from any of the three pre-images of i; this
path will necessarily arrive at one of the three pre-images of j .

2.4. Equality of the length spectrum

The two surfaces M1 and M2 are pseudo-integrable, therefore their periodic orbits occur in
families of parallel orbits of same length [16]. It has been shown in [13] that there is an exact
one-to-one correspondence between the pencils of periodic orbits ofM1 and those ofM2. The
main argument is the principle explained in section 2.3 that for any path drawn on one of the
surfaces there is a corresponding sequence of tiles and a corresponding sequence of matrices.
The product of these matrices, the ‘movement matrix’ M, has the property that Mi,j = 1 if
and only if the sequence of tiles goes from i to j . For any periodic orbit on M1 the last tile
has to be equal to the first one, and a closed path going from tile i to itself has a movement
matrix verifying M

(1)
i,i = 1. The quantity Tr(M(1)) is therefore the number of tiles from which

one can start and come back to oneself after a sequence of tiles giving the movement matrix
M(1). Since the commutation relation (10) implies that Tr(M(1)) = Tr(M(2)), there is the
same number of tiles having this property in M2. So for any periodic pencil drawn on this
sequence of tiles there will be Tr M(1) identical copies of it (in particular with same length and
same width) on M1 and the same number on M2, hence the bijection between the periodic
orbits. As an illustration, figure 4 shows the two pencils of periodic orbits in a given direction
on M1 and M2: the grey orbit has the same length and the same width on both surfaces, and
so does the white orbit.



Diffractive orbits in isospectral billiards 2757

3. The Green function

Relation (3) implies that the imaginary part of the trace of the (retarded) Green function is
identical for two isospectral billiards. Here we will be more precise and express the Green
function of M2 in terms of the Green function of M1.

3.1. Tile modes and normalization

Each surface M1 and M2 is made out of seven tiles glued together. We will call tile modes
the solutions of the Helmholtz equation (1) on a tile with periodic boundary conditions, that is
a torus of size u × v. The eigenvalues corresponding to these tile modes will be denoted Et ,
and the corresponding eigenfunctions χt .

There is a one-to-one correspondence between these tile modes Et and a subset of the
spectrum En common to the surfaces M1 and M2. First, any eigenfunction χt corresponds to
a solution ψt(a, i) (or φt(a, i)) of the Helmholtz equation on M1 (or M2) by simply taking
the function equal to (or proportional to) χt(a) on each tile: the periodic boundary conditions
for the tile eigenfunctions χt will make ψt and φt continuous. In order to normalize these
eigenfunctions correctly to 1, one has to set

ψt(a, i) = φt(a, i) = 1√
7
χt(a). (11)

Reciprocally, for any eigenstate φn of the surface M1, the function defined on a tile by

χn(a) =
7∑

i=1

φn(a, i) (12)

is either the function 0 or an eigenstate χt of the tile. We will use the subscript s when the
state φn verifies the condition

7∑
i=1

φn(a, i) = 0 (13)

and the subscript t when it does not. The set of eigenstates of M1 (and, in the same way, the
set of eigenstates of M2) can then be partitioned into two sets: the eigenstates φt which are
also the eigenstates of the tile and do not have the property (13), and the eigenstates φs which
have the property (13) (pure ‘surface’ states).

The normalization constant An in (5) will take a different value whether the function φn

belongs to the set of {φt } or {φs}, as we will see now. Equation (5) expresses each eigenfunction
ψn of M2 as a sum of an eigenfunction φn of M1 with the same eigenvalue, taken at three
different points of M1 (or rather at a similar point on three different tiles). The normalization
condition on ψ can be written as

1 =
∫
M2

|ψn(x)|2 dx =
7∑

k=1

∫
tile

|ψn(a, k)|2 da

= 1

A2
n

7∑
k=1

7∑
i,j=1

Tk,iTk,j

∫
tile

φn(a, i)φn(a, j) da

= 1

A2
n

7∑
i,j=1

T 2
i,j

∫
tile

φn(a, i)φn(a, j) da (14)
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where we have used the fact that T is symmetric and summed over k. Since the matrix T 2 is
equal to (T 2)i,j = 1 + 2δij (δij is the Kronecker symbol), we get

A2
n =

7∑
i,j=1

∫
tile

φn(a, i)φn(a, j) da + 2
7∑

i=1

∫
tile

|φn(a, i)|2 da

=
∫

tile

∣∣∣∣∣
7∑

i=1

φn(a, i)

∣∣∣∣∣
2

da + 2
∫
M1

|φn(a, i)|2 da. (15)

For the tile modes ψt , we can replace φ by χ/
√

7 from equation (11). This yields

A2
t = 49

7

∫
tile

|χt(a)|2 da +
14

7

∫
tile

|χt(a)|2 da = 9 (16)

because the functions χt are normalized to 1 on the tile. For the non-tile modes φs , which
verify equation (13), equation (15) gives A2

s = 2. Finally we have

ψt(a, i) = 1

3

∑
j

Ti,jφn(a, j) (tile modes)

ψs(a, i) = 1√
2

∑
j

Ti,jφn(a, j) (surface modes).
(17)

3.2. The Green function of the translation surfaces

In this section, we express the Green function on the surface M2 in terms of the Green function
of the surface M1. We will use the expansion over eigenstates for the advanced Green function
of M2:

G(2)(a, b) =
∑

n

ψn(a)ψn(b)

E − En + iε
(18)

where ψn and En are respectively the eigenfunctions and the eigenvalues of M2. We have to
split the sum over n into a sum over the tile modes ψt and the non-tile modes ψs , and replace
ψ by its expression (17):

G(2)(a, i; b, j) = 1

9

∑
t

∑
i ′,j ′ Ti,i ′Tj,j ′φt(a, i ′)φt (b, j ′)

E − Et + iε

+
1

2

∑
s

∑
i ′,j ′ Ti,i ′Tj,j ′φs(a, i ′)φs(b, j ′)

E − Es + iε
. (19)

If we add and subtract (1/2)
∑

t , we get

G(2)(a, i; b, j) = 1

2

∑
i ′,j ′

Ti,i ′Tj,j ′
∑

n

φn(a, i ′)φn(b, j ′)
E − En + iε

− 7

18

∑
i ′,j ′

Ti,i ′Tj,j ′
∑

t

φt (a, i ′)φt (b, j ′)
E − Et + iε

. (20)

The first sum is a sum over Green functions of M1; in the sum over the remaining t modes,
we replace φt by its value given by equation (11). This gives

G(2)(a, i; b, j) = 1

2

∑
i ′,j ′

Ti,i ′Tj,j ′G(1)(a, i ′; b, j ′) − 1

18

∑
i ′,j ′

Ti,i ′Tj,j ′G(t)(a; b) (21)
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where G(t)(a; b) is the Green function on the tile. This Green function does not depend on i ′

or j ′, therefore the sum over i ′ and j ′ can be performed:
∑

i ′,j ′ Ti,i ′Tj,j ′ = 9 since each row
and each column of T has three 1’s. Finally the Green function of the surface M2 is

G(2)(a, i; b, j) = 1

2

∑
i ′,j ′

Ti,i ′Tj,j ′G(1)(a, i ′; b, j ′) − 1

2
G(t)(a; b). (22)

Obviously, a similar relation can be obtained that expresses G(1) as a sum over functions G(2).

4. Diffractive orbits

4.1. Štovı́ček’s formalism

We know from [11] that the exact expression for the Green function can be obtained for
billiards with a polygonal enclosure as a scattering series, where each term is a sum over
scattering paths made of straight lines and scatters on the singular corners. Each scattering
path contributing to G(a, b) is made of a starting leg of length r0 going from the initial point
a to a scatterer, then an alternating series of diffractions with angles ϕi ∈ R followed by legs
of length ri, 1 � i � n, the last leg of length rn going from the last scatterer to the final point
b. The expression given in [11] for scattering on straight reflectors can be adapted here and
gives

G(a, b) =
∞∑

n=0

1

(2π)n

∑
n vertex

paths

1

2i

∫ ∞

−∞
ds1 ds2 · · · dsnH

(1)
0 [kR(s1, s2, . . . , sn)]

×
n∏

k=1

2π

(γkMk + θk + isk)2 − π2
(23)

where

R2(s1, s2, . . . , sn) = (r0 + r1 es1 + r2 es1+s2 + · · · + rn es1+s2+···+sn )

× (r0 + r1 e−s1 + r2 e−s1−s2 + · · · + rn e−s1−s2−···−sn ). (24)

The kth diffraction angle ϕk is equal to Mkγk + θk; here γk is the measure of the angle at the
singularity (4π or 6π in our case), Mk is the winding number (i.e. the number of times the path
winds around the singularity), and 0 � θk < γk . A schematic example of such a scattering
orbit is provided in figure 6.

4.2. Diffractive orbits

Let us now look at the ‘saddle connexions’ [17] which we define as the geodesics joining two
diffracting vertices. If u and v are the width and the height of a tile, the vertices (scattering
and non-scattering) are in the directions (mu/2, nv) with m, n ∈ Z. Each pair (m, n) with m
and n co-prime will give the direction of a saddle connexion. If we define

lp =
√

(mu/2)2 + (nv)2 (25)

for p = (m, n) ∈ Z
2,m and n co-prime, the lengths of the saddle connexions will be of

the form klp, k ∈ N. These saddle connexions will be the legs of the scattering paths in the
expansion (23).

But there is no one-to-one correspondence between the saddle connexions of M1 and
those of M2. In fact, there are saddle connexions in M2 that cannot be found anywhere in
M1. For instance, the dashed saddle connexion on the surface M2 in figure 4 in the direction
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Figure 5. A contribution to the Green function in the case of forward diffraction.

(m = 1, n = 2) has a length 4lp, which is twice as long as any of the saddle connexions
existing in M1. A way of understanding how this difference between the sets of diffractive
orbits still allows isospectrality is to prove relation (22) between the Green functions, using
their expression (23) as a definition. This will be done in the following section, by establishing
a certain correspondence between the scattering trajectories.

4.3. Correspondence between diffractive orbits

Let us consider a contribution to (23) for any of the two surfaces. It is a succession of scatters
and saddle connexions of lengths (kp1 lp1, kp2 lp2, . . . , kpn

lpn
), where the ki are integers and the

li are defined by (25). In the case of forward diffraction (θk = π [2π ]), the integral over sk

has a pole at sk = 0. But the discontinuity arising from this singularity is cancelled by an
opposite discontinuity in the term of order (n − 1) in (23), as it should for physical reasons of
continuity. This cancellation is discussed in [11]. This means that in expression (23) one has
to interpret any term containing a forward scattering θk = π [2π ] between a and b as the limit
for ε → 0 of a term corresponding to a path from aε to bε , with aε → a and bε → b. This
shifted path from aε to bε will have two contributions: a straight path from aε to bε missing
the singularity, plus a sum over all the scattering contributions starting from aε and winding
any number of times around the singularity (see figure 5).

Furthermore, this still holds even if there is no scatterer at the vertex because in that case
the series of diffractive terms adds up to zero: when γk = 2π ,

∞∑
Mk=−∞

2π

(γkMk + π + isk)2 − π2
= 0. (26)

Therefore any saddle connexion of length klp can be replaced (as in figure 5 but imagining
now that a and b are scattering vertices and that the × corresponds to a non-diffracting vertex),
by a sum over all possible paths made of straight lines of length kilp parallel to the saddle
connexion and by windings around the non-scattering vertices any number of times, with the
condition that

∑
ki = k. So, any contribution to (23) can be decomposed into an infinite sum

of paths made of a fixed number of windings around scattering vertices and any number of
windings around non-scattering vertices. This is illustrated in figure 6.

An orbit on the torus going from a to b consists only of a straight path between a and
b, since there is only one vertex and it is non-diffractive. But again, one can decompose this
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Figure 6. A contribution to the Green function in the case of forward diffraction. The filled circles
are scattering vertices, the open ones are non-scattering vertices.

straight path into a sum over paths going from the vertex to itself and winding any number of
times around the vertex. These contributions will add up to zero.

Let us now fix two points a and b on the torus and consider a path of the type described on
the left-hand side of figure 6, with any given number of windings around the vertices. All the
contributions to G(2)(a, i; b, j),G(1)(a, i; b, j) or G(t)(a; b) are of this type. Reciprocally,
one can write each Green function as a sum over such contributions weighted by 1 if such a
path exists between (a, i) and (b, j) and by 0 otherwise.

Since such a path does not hit any vertex, the sequence of matrices (A1, . . . , An)

corresponding to the movement is well defined (see section 2.3), and one can construct
the corresponding movement matrix M = A1A2 · · · An. This path always exists on the torus,
which means that it is always a contribution to G(t)(a, b). According to section 2.3, it will
exist on the surface Mν, ν = 1, 2, if and only if a and b are on tiles i and j such that M

(ν)
i,j = 1.

Therefore any such path contributes to the right-hand side of equation (22) with a weight −1/2
coming from G(t)(a, b) and with a weight

∑
(1/2)(Ti,i ′Tj,j ′), where the sum runs over all the

pairs i ′, j ′ such that the orbit exists between tile i ′ and tile j ′, i.e. such that M
(1)
i ′,j ′ = 1. The

total weight associated with this path on the right-hand side of equation (22) is therefore

1

2

∑
i ′,j ′

Ti,i ′Tj,j ′M
(1)
i ′,j ′ − 1

2
. (27)

Using the commutation relation (10), we have∑
i ′,j ′

Ti,i ′Tj,j ′M
(1)
i ′,j ′ = (M(2)T 2)i,j . (28)

But it can be computed directly from expression (4) for T that (T 2)ij = 1 + 2δij . Therefore

(M(2)T 2)i,j =
∑

k

M
(2)
i,k + 2M

(2)
i,j . (29)

Since M(2) is a permutation matrix, the sum over a column is equal to 1. We get, from
equations (28) and (29),∑

i ′,j ′
Ti,i ′Tj,j ′M

(1)
i ′,j ′ = 1 + 2M

(2)
i,j . (30)

The weight (27) of a path on the right-hand side of equation (22) is therefore equal to M
(2)
i,j ,

which is exactly its weight in the expression of G(2)(a, i; b, j). This is an alternative way
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of proving the equality (22), using the formula (23) for the Green function instead of the
isospectrality of the surfaces.

In fact, equation (30) provides a more precise result: it states that there is a ‘one-to-three’
correspondence between the diffracting orbits of M2 and those of M1. The main point is that
for (i, j) given tiles on M2,

∑
i ′,j ′ Ti,i ′Tj,j ′M

(1)
i ′,j ′ is the number of times a path of movement

matrix M(1) appears among the nine Green functions G(1)(a, i ′; b, j ′) with i ′ being the pre-
image of i and j ′ the pre-image of j . So if a path exists in M2 between tile i and tile j (which
means M

(2)
i,j = 1), then three copies of it exist in M1 (and this will necessarily be between the

three pre-images of i and the three pre-images of j ), whereas if a path does not exist in M2,
then by equation (30) only one copy of it exists in M1 (between one of the three pre-images
of i and one of the three pre-images of j ).

5. Back to periodic orbits

A final question one might want to ask is the following: why is there a one-to-one
correspondence between periodic orbits, whilst each periodic orbit inM2 should correspond to
three orbits in M1? The answer is that these three orbits are not necessarily periodic. Consider
a periodic orbit in M2, not hitting any vertex (almost all of them verify this condition), going
from tile i to itself with a movement matrix M(2). Let us call {i1, i2, i3} the three pre-images of
i. Then, according to what we said in the previous section, there are three copies of this orbit
in M1 going from k ∈ {i1, i2, i3} to k′ ∈ {i1, i2, i3}. But these copies in M1 are not periodic
if k �= k′. Moreover, we know that there are in fact seven copies of this orbit in M1, if we do
not restrict ourselves to the pre-images of i and j as starting and ending tiles. Therefore for
periodic orbits the correspondence is more global: the condition of periodicity imposes that
we take into account not only orbits from pre-images to pre-images, but orbits from any tile
to any tile. Then, as we already said, the number of such orbits is Tr M(1), which is equal to
Tr M(2). We should therefore speak of a Tr M(1)-to-Tr M(1) correspondence between periodic
orbits, the value of Tr M(1) depending on the periodic orbit considered.

6. Conclusion

For the pair of billiards given in figure 2, which are made of rectangular tiles glued together,

there exists a set of neighbour matrices {R(ν), L(ν),
−→
U (ν),

←−
U (ν),

−→
D (ν),

←−
D (ν)} describing the

way these tiles are glued together. The essential feature which accounts both for isospectrality
and for the correspondence between paths on the surface is the existence of a ‘transplantation
matrix’ T which has three properties:

• it is invertible (otherwise one of the spectra would just be a subset of the other);
• it is not a permutation matrix itself (otherwise the two domains would just be congruent);
• it has the commutation property T M(1) = M(2)T for all neighbour matrices M, which

assures that smoothness at all the segments between the tiles and boundary conditions
will be satisfied.

It is therefore possible to generalize the previous analysis to all the pairs of isospectral
billiards made of base tiles glued together, provided one can find a transplantation matrix
T having these three properties. It turns out that all the examples of pairs of isospectral
billiards, as far as is known (see [6] and [18]), are constructed by the same application of a
theorem by Sunada [19] and consist of tiles of a given base shape glued together. Moreover,
Sunada’s theorem implies the existence of a transplantation matrix in each case [18]. Therefore
equation (28) always holds, and the same arguments can be adapted to establish a
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correspondence between diffractive orbits in all these other known cases. However, the
correspondence depends on the entries of the matrices T and T 2, and might be more complicated
in the general case. The same results could also be worked out for pairs of isospectral billiards
which would not be based on Sunada’s theorem but would nevertheless have a transplantation
matrix. It is not known however if such billiards exist [18].

Acknowledgment

J H Hannay is warmly thanked for his help all along this project. The funding of the Leverhulme
Trust is gratefully acknowledged.

Appendix

The matrices that describe the gluings between the plates of the translation surfaces M1 and
M2 are obtained using figure 2. For the structure M1 they read

R(1) =




0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0




←−
U (1) =




0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1




−→
U (1) =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0




.

(31)

For the structure M2 they read

R(2) =




0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0




←−
U (2) =




0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1




−→
U (2) =




0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1




.

(32)

One can verify explicitly that the commutation relations (7) hold for these matrices.
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It is of some mathematical interest to note that the groups �(1) and �(2) generated by the

neighbour matrices {R(ν), L(ν),
−→
U (ν),

←−
U (ν),

−→
D (ν),

←−
D (ν)} for ν = 1, 2, are subgroups of S7 (the

group of permutations of seven elements) of order 168. These groups turn out to be isomorphic
to the linear group L2(7) (also called PSL(2, 7)), which is the group of automorphisms of
the finite projective plane of order 2, or Fano plane (see [20] for a definition). The matrix T is
nothing but the incidence matrix of the graph corresponding to the Fano plane.
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